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ABSTRACT

Decentralised coordination in multi-agent systems is typ-
ically achieved using communication. However, in many
cases, communication is expensive to utilise because there
is limited bandwidth, it may be dangerous to communicate,
or communication may simply be unavailable at times. In
this context, we argue for a rational approach to communi-
cation — if it has a cost, the agents should be able to cal-
culate a value of communicating. By doing this, the agents
can balance the need to communicate with the cost of do-
ing so. In this research, we present a novel model of rational
communication, that uses reward shaping to value communi-
cations, and employ this valuation in decentralised POMDP
policy generation. In this context, reward shaping is the pro-
cess by which expectations over joint actions are adjusted
based on how coordinated the agent team is. An empirical
evaluation of the benefits of this approach is presented in
two domains. First, in the context of an idealised bench-
mark problem, the multiagent Tiger problem, our method
is shown to require significantly less communication (up to
30% fewer messages) and still achieves a 30% performance
improvement over the current state of the art. Second, in
the context of a larger-scale problem, RoboCupRescue, our
method is shown to scale well, and operate without recourse
to significant amounts of domain knowledge.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Experimentation, Theory

Keywords
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1. INTRODUCTION
Increasingly, complex real-world problems are being tack-
led by teams of software agents. Whilst this approach has
many benefits in terms of creating robust solutions, it also
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poses a new challenge — how to coordinate the actions of
the agent teams to solve the problem efficiently. In this con-
text, coordination involves managing the interactions of the
autonomous entities so that they do not disrupt each other,
can take proactive actions to help each other, and can take
multiple actions at the same time when this is required to
solve the problem.

Now, in almost all existing work, communication is an in-
tegral component of the coordination problem. That is, the
agents communicate their state and intentions to each other
in order to reach agreements and an understanding about
how to coordinate their actions. However, in many real-
world problems, communication is a scarce resource. Specif-
ically, communication is typically limited in bandwidth, is
not always available, and may be expensive to utilise. In
such circumstances, many coordination mechanisms break
down because the agents can no longer accurately model
the state of the other agents. Given this, in our research, we
consider how to utilise rational communication [3] to coor-
dinate when communication is a restricted resource.

Against this background, this work presents a model of
rational communication using a novel, principled valuation
for communications based on belief divergence. Specifically,
we demonstrate that belief divergence, a measure of how
coordinated the beliefs of a distributed team are, can be
used to model the likelihood of coordination on the decen-
tralised computation of joint actions, and furthermore, gen-
erate new expectations over joint actions that account for
the probability that team members will coordinate. This
new approach efficiently approximates the value of commu-
nications in a decentralised sequential decision making con-
text — where the generation of the exact value of communi-
cating is an intractable problem because agents must reason
about all possible team observations and action histories. In
particular, our approach allows the agents to attach a prin-
cipled value to the communication action, and so balance
the possible value gained by the team with the costs associ-
ated with using the communication infrastructure. Conse-
quently, our formalisation extends the state of the art in two
main ways. First, it allows decentralised POMDP models
to be applied to larger problems (for instance RoboCupRes-
cue), than has hitherto been possible, whilst avoiding any
domain-specific knowledge to generate valuations for com-
munication actions. Second, it generates more accurate on-
line valuations of communication than the previous state of
the art, and by doing so, allows an expensive communication
to medium to be used more efficiently.

In the rest of this paper, Section 2 describes the main re-
lated approaches for valuing communications in multi-agent
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coordination. Section 3 describes our general formalisation
for valuing communications and Section 4 gives a specific
instantiation in terms of the multiagent Tiger problem and
RoboCupRescue. The former problem allows us to compare
our approach with the state of the art and theoretically op-
timal solutions, whilst the latter allows us to show how our
model works in larger-scale problems. Section 5 gives an
empirical analysis of our model within these two domains,
showing the utility of our approach. Finally, Section 6 con-
cludes.

2. BACKGROUND AND RELATED WORK
In this section we consider work that has attempted to cre-
ate a rational value of communicating and the coordination
mechanisms they are embedded within. To achieve rational
communication, the key challenge is how the sender can es-
timate the value to the team of a particular communication.
Now, this is often done by measuring the value of communi-
cation as the improvement in coordination that occurs. This
involves modelling the coordination problem explicitly, and
perturbing it to see how it changes with communication.

Considering this approach, if we evaluate models of the
coordination problem, such as in STEAM [12] where agents
build models of the team and have teamwork operators to
perturb this model, then we can predict the change in utility
based on sending a communication. Indeed, this is carried
out in [12], which models the future stages of the team coor-
dination in a Markov Decision process (MDP), where com-
munication acts cause transitions in the model. However,
the communication semantics are dictated by the teamwork
model — making the solution less general.

A similar approach in [3] models the state of the team
knowledge using a Bayesian Network, and values commu-
nication based on how it changes the expected utility of
possible actions. Both methods rely on agents maintain-
ing complex models to generate coordinated actions, rather
than explicitly modelling coordination. Whilst this general
approach is very powerful, and generates an accurate value
of the impact of communication, it requires an estimation
of the state of each team member, which is not realistic
for larger teams where the agents can be in many different
states. In essence, the computational complexity of this ap-
proach does not scale well with the number of agents, and
it would be better if we could derive a valuation that does
not depend on a complex team model as this is difficult to
maintain and grows with the size of the team.

Another alternative, decentralised Partially Observable
Markov Decision Processes (Dec-POMDPs), have been in-
troduced by a number of authors including [13], in order to
model the team decision problem in a sequential domain.
Such approaches are good at representing partially observ-
able, stochastic problems with a more general communi-
cation framework than teamwork models. Unfortunately,
these models do not scale well because of the classic curse
of dimensionality problem. Nevertheless, this still forms the
point of departure of our work because it allows us to model
our problem with communication restrictions and our com-
munication valuations can be combined with existing work
on efficient policy generation to make for a more scalable so-
lution. To give more details, consider the dec POMDP com
from Zilberstein and Goldman [13], which is a decentralised
POMDP with an added alphabet of possible communica-
tions. In this context, the difference between centralised
and decentralised POMDPs is that the former is a single
POMDP that can be solved by each agent or a central au-

thority — since the state of each agent is known to all others.
In a decentralised version, however, each agent has its own
POMDP to solve, with the other agents corresponding to
a part of that POMDP. The dec POMDP com is the tuple
DECPOM = 〈n, S,A, Σ, CΣ, P, R, Ω, O, T 〉 where:

• n is the number of agents.

• S is the global state space.

• A = ×Ai is the joint action space, with Ai the action
space for agent i. An element a = 〈a1, . . . , an〉 of the
joint action space represents the concurrent execution
of the actions ai by each agent i.

• Σ is the alphabet of communications with σi ∈ Σ a
message sent by agent i. σ is a joint communication
from set Σn. εσ is the null communication, i.e. sending
an empty message.

• CΣ is the cost of communicating an atomic message.
This cost is 0 for εσ.

• P is the transition probability function. That is, the
probability

P (s ∈ S, a ∈ A, s′ ∈ S) ∈ [0, 1] (1)

of moving from state s to state s′ when the agents take
joint action a.

• R is the reward function. Returns a real-valued reward

R(s ∈ S, a ∈ A, σ ∈ Σn, s′ ∈ S) ∈ R (2)

for executing joint action a and sending joint commu-
nication σ in state s, resulting in state s′.

• Ω = ×Ωi is the joint observation space, with Ωi the ob-
servation space for agent i. An element ω = 〈ω1, . . . , ωn〉
of the joint observation space, represents the concur-
rent observation ωi by each agent i.

• O is the observation function. It is the probability

O(s ∈ S, a ∈ A, s′ ∈ S, ω ∈ Ω) ∈ [0, 1] (3)

of joint observation ω when in state s and taking joint
action a resulting in state s′.

• T ∈ N
+ is the (possibly infinite) time horizon in which

the agents take their actions.

The solution to the decentralised model consists of two poli-
cies: i) the action policy that associates belief states with
actions and ii) the policy that associates belief states with
communication acts. Now, general offline solvers can typ-
ically approximate solutions for problems with around 216

states for two agents [2]. However, this is not sufficient for
problems as large as RoboCupRescue (which has about 2700

states). To operate at this scale, previous work typically
uses an online approach to solve the decentralised POMDP
[8]. However, this model relies on extensive domain knowl-
edge in order to generate efficient decentralised polices. Fur-
thermore, this model assumes that communication is some
parallel activity to other actions. However, we believe this is
an unreasonable assumption since, in many problems, com-
munication is only available at specific instances or shares
resources with the other actions. Furthermore, the cost of
communication in this model is represented by some arbi-
trary negative utility over the communication alphabet Σ.
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This is a considerable weakness, because it does not rep-
resent the opportunity costs of using communication when
communication shares some resource with the other actions
(i.e. power, bandwidth or time).

Now, [11] considers how to generate a communication pol-
icy, but starts by analysing an offline centralised MDP so-
lution rather than the decentralised POMDP. Against this,
the true impact of communications on expected reward can
be calculated using a POMDP by considering the joint be-
lief space during policy generation, but this is intractable
since decentralised POMDPs have NEXP-time complexity
[1]. In this context, [9] presents the ACE-PJB-Comm al-
gorithm which represents the state of the art in generating
communication valuations by making communication deci-
sions an online issue and solving the centralised POMDP
offline. In this method, agents maintain a distribution of
the joint belief space and use this to decide whether to
send a communication. Nevertheless, this remains infeasi-
ble for large problems since the joint belief space still has
NEXP-time complexity. To combat this, [10] proposed the
dec POMDP Valued Com model, which uses online policy
generation over local observations. However, this model has
a parameter, α, that values communication as a weighting of
the information-theoretic value of the content of the message
and the original reward function. Unfortunately, α needs to
be hand-tuned for a specific domain. To overcome this, we
propose a principled way to approximate this valuation us-
ing a measure of belief divergence in the team. This makes
the computation tractable by removing the need to consider
the joint belief space in policy generation (more details are
given Section 3), and at the same time, does not require
significant amounts of domain information.

3. REWARD SHAPING FOR COMMUNICA-

TION VALUATIONS
This section introduces the RS dec POMDP, a modifica-
tion of the decentralised POMDP formalisations presented
in Section 2 which utilises a novel reward shaping mecha-
nism to compute decentralised policies using only local ob-
servations. We first describe the intuition of reward shaping
and detail how the model aligns with previous decentralised
POMDPs. Then we describe how the reward shaping is cal-
culated and, finally, how this is used with communication in
an online policy generation algorithm.

3.1 Reward Shaping
We would like our agents to be able to calculate policies
for decentralised POMDPs using only local observations and
communication histories. To this end, we describe a model of
reward shaping that uses the concept of belief divergence to
estimate the need for communication in a principled fashion.
Now, the standard model of rational communication models
the exact beliefs of other agents and analyses how commu-
nication would change their actions. However, it is cheaper
to maintain an estimate of how coordinated the beliefs of
the agents are and use this to decide when to communicate.
The intuition here is that agents that have a very small
difference in their beliefs can calculate the impact of joint
actions independently and arrive at the same answer. Since
this same answer relates to the joint action space, then they
will be coordinated if they follow their own part of the joint
action. However, if the difference in beliefs is greater, then
some communication may be needed in order to resynchro-
nise their beliefs and allow them to make independent coor-

dinated actions again. Within this setting, reward shaping
is the process by which independent estimations of the ex-
pected reward of joint actions are modulated by the agent’s
perception of the belief divergence in the team. Low diver-
gences mean the beliefs are coordinated and so all agents
can independently calculate the same expected reward for
each joint action. Conversely, large divergences mean that
agents cannot independently value joint actions and in this
case can only estimate the value of local actions and assume
the other agents act randomly (or according to some prede-
termined distribution).

Therefore, we first extend the dec POMDP com model
by including communication actions into the standard ac-
tion selection policy problem. This is a non-trivial change.
In particular, by doing so, the reward function for the prob-
lem needs to be changed to consider just joint actions (an
action for each agent), unlike previous models which assign
rewards for a joint domain action and joint communication
together. The benefit of this modification is that communi-
cation penalties can now be represented by opportunity costs
— a more general representation. Furthermore, each agent
now has to maintain parameters about the rest of the team
— this is the estimation of the belief of the rest of the team
about the state of the problem. This is compared with an
agent’s own belief to give an estimation of belief divergence,
which is then used to modulate the reward function for all
actions in order to approximate the value of communication
(see Section 3.2). As a result, this extended model allows
the communication valuation problem to be extracted from
the policy computation problem, resulting in complexity re-
duction benefits compared to the dec POMDP com which
requires that the full joint experiences of the team are anal-
ysed to value communications. Finally, we restrict the com-
munication alphabet to the observation alphabet, to main-
tain the generality of the communication valuation because
we do not introduce any problem-specific communications.

More formally, RS dec POMDP is the tuple RSDPM =
〈n, S,A, P, Ω, O, T, R, Rrs, Σ, CΣ, B, Bd, π〉 where the defini-
tions are the same as those for the dec POMDP com except:

• R is the reward function for all actions (including com-
munication where R(C) = CΣ). It returns a real-
valued reward:

R(s ∈ S, a ∈ A, s′ ∈ S) ∈ R (4)

when executing joint action a in state s, resulting in
state s′. This is equivalent to R in the original formal-
isation, except that the communication substage has
been removed.

• Rrs ∈ R is the reward signal supplied to the policy
generation problem. Here, we introduce a principled
shaping function over the original R which uses be-
lief divergence to modulate the reward based on how
coordinated the team’s beliefs are.

• B represents the agent’s estimation of the current state.
Specifically, B(s) ∈ [0, 1] is the probability that the
problem is in state s.

• Bd ∈ R represents the agent’s current estimation of
the divergence in the beliefs of the agents. Section 3.2
will explore this parameter further.

• π is a policy that relates joint actions (including com-
munications) to beliefs and belief divergences, π : B ×
Bd → A.
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Now, we need to detail how an Rrs can be constructed
without considering the full joint observation space, and
which approximates the policy constructed over the origi-
nal R when we do.

3.2 Expected Rewards using Belief Divergence
In this section we discuss how to measure belief divergence,
and then how to use this to shape expected rewards.

We would like a principled metric that indicates the dis-
tance between two different beliefs B and B′ in a general
fashion. Hence we need to consider: i) how to measure a
distance in belief; and ii) how to estimate the difference in
beliefs for a team of distributed agents.

Considering the first problem, since we are measuring the
distance between probability distributions, it is appropri-
ate to use information theory to measure the difference.
The actual measure is dependent on the problem, so sim-
ple domains might use an absolute difference (Bd(Bi, Bj) =P

s∈S(Bi(s)−Bj(s))) in belief variables or relative entropy.
In contrast, more complex belief spaces might use an aggre-
gate measure like KL Divergence [5]

Bd(Bi, Bj) = DKL(Bi||Bj) =
X
s∈S

Bi(s)log
Bi(s)

Bj(s)

In the second problem of estimating a distributed belief,
we can use a simple estimation of information propagation.
Specifically, we assume that the other agents will not have
independently received any of the observations the commu-
nicating agent is deliberating over, and that its beliefs have
remained static since the last communication action. To this
end, we establish a reference point, Bref , which is the belief
of the agent when it last synchronised its knowledge. We
then compare the current belief state Bi with this point.
More formally, the approximate divergence Bda is:

Bda(Bi) = Bd(Bi, Bref ) (5)

Considering this assumption could result, on the one hand,
in an over-estimate of the divergence due to assuming that
the other agents will not have gained any of the new infor-
mation that the deliberating agent has received since the last
communication point. On the other hand, this assumption
does not account for information the other agents have re-
ceived which the communicating agent has not — causing an
under-estimate in the divergence. Consequently, it is hard to
place bounds on the approximation of the divergence using
this assumption but we believe it is still a useful departure
point due to its ease of implementation in a decentralised
fashion. Furthermore, it may be possible to make the ap-
proximation more accurate using the observation function
to obtain probabilities of features being commonly known.
With the divergence measure established, we now consider
how to use it to shape rewards.

Each agent calculates the expected value for each joint ac-
tion over its impression of the belief state B and divergence
Bd. If each agent has the same beliefs (Bd = 0) then they
will all calculate the expected reward E(a)u of a joint action
a = 〈ai, a−i〉, where ai is the action taken by agent i and
a−i are the actions taken by the other agents, as:

E(a)u =
X
s∈S

X
s′∈S

B(s).P (s, a, s′).R(s, a, s′) (6)

If the divergence is maximum (normalised, Bd = 1), then the
agents cannot assume they will each generate the same value

for the joint actions, and so they will mis-coordinate. Con-
sequently, an agent locally calculates the expected reward of
a joint action assuming the other agents act randomly:

E(a)r =
1

|A−i|
X

a−i∈A−i

X
s∈S

X
s′∈S

[B(s).

P (s, 〈ai, a−i〉, s′).R(s, 〈ai, a−i〉, s′)] (7)

where A−i is the joint action space of all agents except i.
In general 0 < Bd < 1, so in this case the shaped expected
reward for a joint action is given by the following function
(which is problem-dependent):

Rrs(a, Bd) = f(Bd, E(a)u, E(a)r) (8)

Section 4.gives examples for our two exemplar domains.

3.3 Communication within Policy Generation
We want our model to be applicable to large problems and
consequently it is important to only generate solutions to
parts of the belief space that the agents encounter. With
this in mind, we take inspiration from online policy gen-
eration algorithms, such as [8], but create a new model of
policy generation that incorporates communication and re-
ward shaping. A new model is necessary because previous
online algorithms do not consider the joint action space or
communications explicitly (as per Section 2). In more detail,
agents are allowed to communicate their history of observa-
tions from the last time they communicated (at this stage
we only consider synchronisation communication) and the
information in these observations represents the belief di-
vergence. The expected reward for each action is calculated
using Equation 8 and we assume we know f . In this model,
communication causes the divergence to be reset to zero. Us-
ing this mechanism, we expect the agents to either employ
actions with a lower penalty (where the average expectation
is high) for mis-coordination or to communicate when the
divergence is high, and to perform actions that have large
rewards for coordinated behaviour when it is low.

More formally, each agent performs a search in the lo-
cal belief space b, using joint actions and local observations
to generate new belief states. Essentially, nodes are belief
states, and branches are composed of joint actions and local
observations. The search is pursued to depth D (this again
is dependent on the problem). We define a new function
P (ωi|b, a) which is the probability of an observation ωi in a
belief state b given a joint action a. An action a is given by:

π(b, D) = argmaxa

X
ωi∈Ωi

P (ωi|b, a)δ(ρ(b, a, ωi), D − 1) (9)

where δ(b, d) calculates the recursive payoff in the search
tree and is defined by:

δ(b, d) =

8><
>:

0 , if d = 0

f(Bd, E(a)u, E(a)r) + γ maxa

P
ωi∈Ωi

[P (ωi|b, a) × δ(ρ(b, a, ωi), d − 1)] , if d > 0

(10)
where γ is the discount factor and ρ(b, a, ωi) gives a new
belief state b′ when action ρ(b, a, ωi) is performed in b and
ωi is received. Incidentally, we must calculate a new belief
divergence B′

d after each action:

B′
d =

(
0 , if ai = COM

Bd ∪ ωi , if ai �= COM
(11)
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where COM is a communication action (a message composed
of elements of Σ). This is the only place where communi-
cation actions are treated differently to other actions. In
effect this says that, if the agent communicates, its belief di-
vergence is reset to 0, else the observation that has just been
received must be integrated into the divergence estimate.

Using this technique, our approach can handle problems
as large as RoboCupRescue, yet does not require extensive
domain knowledge for solving decentralised POMDPs. We
can do this because we only use local observations, making
the search tree significantly smaller (the branching factor is
of the order of the number of possible observations, rather
than a combination of number of agents and observations).

4. EXAMPLE IMPLEMENTATIONS
This section describes the multiagent Tiger problem [6] —
a well known coordination problem which allows us to com-
pare our method with the state of the art, and then demon-
strate how our coordination mechanism can be used to facili-
tate agent teams in this domain. Following this, we describe
a large problem — RoboCupRescue which, unlike the Tiger
problem, requires an approximate solution for the optimal
policy due to its size and so is included to illustrate the
scalability of our method.

4.1 The Multiagent Tiger Domain
The multiagent Tiger domain is a multiagent extension to
the classic Tiger problem, which we describe here along with
the modifications we have made to allow communication.
We describe the problem for two agents, since this is the
case considered by previous work, but the problem can be
extended trivially to more agents.

In more detail, two agents must each open one of two
doors. Behind one door is a treasure and behind the other
is a penalty in the form of a tiger. The agents do not know
which door contains the tiger. This gives two states: SL
where the tiger is behind the left door, and SR when it is
behind the right door. If both agents open the door con-
taining the treasure then they receive a large reward. If one
agent opens the door with the tiger then they both receive a
large penalty. If both agents open the tiger door then they
receive a smaller penalty. Consequently, the agents should
coordinate on the location of the tiger. In order to do this
the agents can request independent, noisy observations of
where the tiger is. An observation has a probability of being
correct equal to 1−w where w is the noise in the observation
function. Furthermore, they can communicate to the other
agent their belief about the location of the tiger. The prob-
lem is sequential in nature and each action (opening a door,
listening for where the tiger is and communicating) takes the
same length of time. The problem is reset to a random state
whenever a door is opened (p(SL) = p(SR) = 0.5). The full
details of this problem are in [6] with the modification that
we have introduced of a communication action that takes
the same length of time as other actions and costs the same
amount as listening for the location of the tiger.

The aim of the problem is to maximise, over a potentially
infinite horizon, the cumulative reward for the agents as a
team. That is, all agents should aim to open the door with
the reward. Consequently they should open the correct door
as often as possible, whilst minimising the amount of time
spent listening or communicating.

4.1.1 As a RS_dec_POMDP

Basic aspects of the decentralised POMDP components of
this model are already defined for this problem in [6]. There-
fore we focus on the parts that are specific to RS dec POMDP.

Belief: Since the tiger problem has only two states, SL or
SR, the belief space can simply be represented as the prob-
ability that the instantiation is in state SL. More formally,
for agent i, the belief is defined as Bi = Pr(SL), where
Bi ∈ [0, 1].

Belief Divergence: In this simple belief space we can use
the absolute difference as a divergence measure (as described
in Section 3.2). More formally, Bd(Bi, Bj) = |Bi − Bj |. We
do not worry about direction since our reward shaping func-
tion will be insensitive to it.

Expected Rewards: We need to derive Eu and Er for
the joint actions available to the agents. These are defined
using Equations 6 and 7.

Table 1: Expected Reward bounds
Joint Action Eu Er

E(〈OL, OL〉) 30 − 80B −155B−21
2

E(〈OR, OR〉) 80B − 50 155B−176
2

E(〈LISTEN, LISTEN〉) 0 −23
E(〈COM, COM〉) −5 −51

2

Reward Shaping Function: Now, we can construct f
(from Equation 8) by considering the impact of the likeli-
hood of coordination based on the divergence in beliefs for
two or more decision makers. This likelihood modulates
between the average Er and coordinated expectation Eu.
We calculate this likelihood by considering the simple pol-
icy that assumes all agents have the same beliefs. This is
easy to calculate in general by reducing the decentralised
POMDP to a centralised multiagent POMDP (which has
a lower complexity class). For the Tiger problem this pol-
icy can be represented by the alpha vectors for each ac-
tion to a horizon of one, as shown in Figure 1. It is im-
portant to note that we only consider the dominating joint
actions 〈OL, OL〉, 〈OR, OR〉, 〈LISTEN, LISTEN〉, 〈COM, COM〉 since a
centralised policy would not consider any other combination
for this problem because their expected value is less than the
dominating actions for all belief states. This policy shows

Figure 1: Centralised policy which assumes all
agents have consistent beliefs
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that, if both agents have a belief B ∈ [0, 0.38], then the
best action for both agents is to open the left door. If both
agents have a belief B ∈ [0.62, 1.0] then the best action for
both agents to open the right door. Finally, for other be-
liefs, the best action is to request an observation. Here, it
is interesting to note that, since the agents always assume
the other agents have the same beliefs, it is never the best
action to communicate since this would be redundant and
only has a negative reward.

Using this policy we can derive a function of distance be-
tween two points in the belief space, which returns the pro-
portion of B in which the two decision makers would select
the same vector. This gives us a probability for a given
divergence that the two agents will successfully coordinate.
More formally, we introduce the probability of coordination,
PC, for a belief divergence Bd,

PC(Bd) =

nX
i=1

max(di − di−1 − Bd, 0) (12)

for a set of intersections in alpha vectors D = {d1, d2, ..., dn}.
It is then simple to use our belief divergence metric to cal-
culate the distance between the intersections.

Policy Computation: Together these components make
up the full Rrs function which uses an estimation of the
belief divergence to estimate the value of communication in
the Tiger problem. The following equation is now used for
the expected value of each joint action:

Rrs(a, Bd) = E(a)r + PC(Bd)(E(a)u − E(a)r) (13)

This equation uses the probability of coordination, PC, based
on belief divergence to weigh two expected rewards — the
fully coordinated reward for a joint action and the value of
an action when other agents act randomly. Consequently, if
belief divergence is low, policy computation uses an expected
reward that assumes coordination in the team, and if not,
it assumes the agent must act alone. The COM action is used
to alleviate belief divergence during policy computation.

4.2 The RoboCupRescue Domain
RoboCupRescue is a multiagent simulator of the situation
in an urban area in the immediate aftermath of an earth-
quake [4]. Here, heterogeneous intelligent agents such as
fire fighters, the police and ambulance crews conduct search
and rescue activities in this virtual disaster world. Specif-
ically, they search for civilian agents trapped in damaged
and burning buildings. The aim of the agents in this do-
main is to rescue as many civilians as possible. Ambulance
agents are responsible for freeing trapped and hurt civilians
and moving them to a refuge; Fire Brigade agents must fight
the spread of the fire; and the Police agents must unblock
roads. In still more detail, the environment consists of build-
ings connected by roads. Nodes connect different roads and
buildings together, thus the map can be seen as a graph.
Agents have limited sensing capabilities; they can only tell
the state of buildings that are very close, with some amount
of noise. They have knowledge of the layout of the map,
but do not initially know which roads are blocked, where
civilians are trapped and which buildings are on fire. All
agents can move along roads and into buildings, if those
roads are not blocked. Agents are hurt if they move into
burning buildings. Communication is peer to peer and has
a cost which we can define for our problem.

In this context, the full RoboCupRescue problem requires

several components not relevant to this research (such as an
estimation of how fire spreads and an efficient search strat-
egy), and so we constrain the problem. To this end, we only
consider the ambulance agents’ task. We do this because the
police task does not require teamwork to unblock roads and
the fire brigade task requires a complex model of the spread
of the fire to do well (thus it is less about coordination).

4.2.1 As a RS_dec_POMDP
In order to specify the basic decentralised POMDP, sev-
eral elements need to be defined from the point of view of
the ambulance agents. Specifically, the state S describes
a set of state variables for whether each building contains
trapped civilians or not, and also the position of the ambu-
lance agents, who can be in any building, or on any road
or node (but only one of them at any one time). The ac-
tions Ai available to the agents are complex behaviours to
move to unexplored buildings, rescue civilians, move civil-
ians to refuges, and finally, communicate their observation
history since the last time they communicated (bh). Agents
select joint actions (an action assigned to each agent from
the set 〈EXPLORE, LOAD, RESCUE, UNLOAD, COM〉) and implement
their own part of that joint action. In this case, a joint
action might involve multiple ambulances digging out one
civilian and in this case the extent to which a civilian is
dug out is sub-linear with the number of ambulances dig-
ging. Consequently, a team of agents does much better
than when the agents work individually. This is so that
tight coordination on rescue actions is desirable, and the
problem is not dominated by the need to search the entire
map in order to do well. The cost of communication CΣ

relates to the time required to send the observation history.
The reward function R gives a reward for each civilian res-
cued and building explored. The observation function O
supplies each agent with the state of buildings nearby (i.e.
whether these contain trapped civilians) and the location
of any agents close enough. The communication alphabet
Σ = Ω1 = Ω2 = . . . Ωn, and so a message can be composed
of any symbol in the observation alphabet.

Belief: We use a factored state space consisting of the
probability that the state variable is true or false. Consid-
ering all state variables together gives the full belief space.

Belief Divergence: This is measured using KL Diver-
gence (as discussed in Section 3.2). We use this aggregate
measure because, unlike the Tiger problem, there are many
belief variables to consider (including one for each building
and location of the ambulances). We can obtain the increase
in KL Divergence during the belief revision process after new
observations very efficiently. More formally:

Bd(bref , bh) = DKL(bh‖bref ) (14)

Expected Rewards: Eu,r can be calculated trivially and
so is not presented here.

Reward Shaping Function: In the Tiger problem we
were able to define an exact reward shaping function (Equa-
tion 8), but this is not possible here since we need a probabil-
ity of coordination and that involves solving the centralised
POMDP (which has PSPACE complexity [7]). However we
can estimate the function as a linear function of the belief
divergence measure giving:

PC(Bd) =
BdM − Bd

BdM
(15)
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where BdM is the maximum KL Divergence in this belief
space.

Policy Computation: Given this, Rrs is:

Rrs(a, Bd) = E(a)r + PC(Bd)(E(a)u − E(a)r) (16)

The intuition here is that we assume there is a linear rela-
tionship between belief divergence and the chance of coor-
dinating. We believe this is valid because the belief space is
large and small differences should not cause a mis-coordination.

5. EMPIRICAL EVALUATION
This section compares our approach for generating decen-
tralised coordinated agents in the Tiger problem to several
benchmarks, including theoretical optimal solutions and the
state-of-the-art from the literature. We then go on to show
its utility in the RoboCupRescue ambulance problem.

5.1 The Tiger Problem
We compare our RS dec POMDP model with ACE-PJB-
Comm because this represents the state of the art in comput-
ing communication valuations for decentralised POMDPs
(see Section 2). Specifically, we compare the performance
in the two-agent Tiger problem described in Section 4.1
where we run 20000 simulations of 6 timesteps (more are
not needed because the game is generally iterated twice or
more in this duration). We also present results for a Full
communication model, where the agents communicate all
observations to each other at each timestep with no cost,
which means each agent is solving an identical POMDP with
a global (though still partially observable) view. Finally, as
a lower bound, we present results for a model (here called
Zero) that never communicates.

In this setting, we compare the average reward per timestep
obtained for different values of the noise parameter w in the
observation function, and the number of messages sent (each
model communicates in the same alphabet and the messages
are generally of the same size across the experiments). We
use average reward per timestep as it allows us to compare
our model (which requires a timestep to communicate) with
one which communicates in parallel directly, and we are in-
terested in performance when the problem is increasingly
difficult to observe directly. Consequently, we vary w from
exact (w = 0) to random observations (w = 0.5). We aim
to test the hypothesis that our RS dec POMDP model can
reduce the communication cost, compared to the state of the
art, without any noticeable drop in team utility.

To this end, Figure 2 shows that, on average, our model
achieves 84% of the utility of the Full model. This is com-
pared to ACE-PJB-Comm which achieves only 53% of the
Full utility. This unexpected improvement is because there
is an inherent weakness in considering the non-communication
policy in isolation — that it does not allow for efficient ex-
ploitation of communication. Furthermore, for w > 0.35
our model avoids dropping below zero reward and remain-
ing there, whilst ACE-PJB-Comm does not. This is because
our model identifies when door opening has potentially dis-
astrous results when the agents might have the wrong coor-
dinated impression, even if communication aids in maintain-
ing consistent beliefs. Also, our model always does better
than the Zero communication model and stays close to Full
for all w. In Full the agents never mis-coordinate, but when
observations are noisy it is risky to open a door, hence the
average reward tends towards zero. Similarly, Zero mis-
coordinates more and more as the noise increases, until the
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Figure 2: Performance of coordination models
against noise, error bars are at 95%.

agents estimate that opening a door is too risky based on the
noisy observations and hence, it tends back towards zero.
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Figure 3: Communication in coordination models
against noise, error bars are at 95%.

Figure 3 compares the number of messages the team of
agents send during the simulation. As can be seen, for
w < 0.35, our model sends fewer messages — communicating
up to 30% less and, on average, 20% less. This is important
since in our model communication is a more costly medium
(in that communication takes a timestep). Specifically, the
agents must be much more careful with their use of the com-
munication medium. ACE-PJB-Comm is not equipped to
deal with communication that shares resources with other
actions — making our algorithm more generally applicable.
Considering Figure 3 further, both models initially increase
communication as noise increases, and then start to drop
as the information communicated becomes less informative
— making communication redundant. Consequently, our
mechanism does better than the state of the art whilst com-
municating less, because it is able to explicitly reason about
the benefit gained from communication versus the cost. The
ACE-PJB-Comm algorithm over-communicates to achieve
the same result because it pays no penalty to do so (ex-
cept the somewhat artificial communication reward penalty,
which subtracts some utility for using communication when
a more general cost is in terms of lost opportunity whilst
using the communication medium). Furthermore, these re-
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Table 2: Results for the RoboCupRescue ambulance
task, averaged over 30 runs with the 95% confidence
interval in brackets.

Average Reward Comms
Full 41 (2) 300 (0)

dec POMDP Valued Com 25 (2) 108 (5)
RS dec POMDP 32 (3) 35 (10)

Zero 26 (5) 0 (0)

sults demonstrate the utility of embedding rational commu-
nication within policy generation — the policy explicitly
accounts for the cost of communication in deciding whether
it is a useful action. In contrast, assuming communication
is free during policy computation (as in ACE-PJB-Comm)
means that the policy does not consider the cost of commu-
nicating, and consequently, exploits it inefficiently.

5.2 The RoboCupRescue Problem
In this problem we compare our model with benchmarks
based on Zero and Full communication (as in Section 5.1).
Furthermore, we compare this model with a heuristic model
dec POMDP Valued Com (see Section 2), which values com-
munications using a learned parameter α, which we set ran-
domly since we are comparing it with our model (which has
no offline learning stage). These simulations use two agents,
however our model can operate with larger teams 1. There
is no optimal solution for this problem, as the decentralised
POMDP cannot be solved exactly by current techniques.

In this case, we compare the percentage of civilians saved
by the end of the simulation and average the results over
30 runs. The results in Table 2 show that Full does the
best because agents never duplicate search and always as-
sist each other in digging out civilians, yet pay no penalty
(in terms of time) for communicating. Furthermore, our new
model outperforms both Zero and dec POMDP Valued Com
in terms of average reward. This is because the latter com-
municates too much (108 messages on average), which repre-
sents a third of the duration of the simulation. In contrast,
our model only communicates 35 times on average, which
leaves substantially more time to rescue civilians and, con-
sequently, the approach does better. Finally, we also see that
some communication is useful (because agents avoid dupli-
cating search and help each other in digging out civilians)
— which is why our model does better than Zero.

6. CONCLUSIONS
We have developed a model of rational communication that
can evaluate the usefulness of communicating to an agent
team using an information-theoretic measure of the belief
divergence. This is combined with a decentralised decision-
theoretic coordination mechanism that utilises reward shap-
ing to balance the cost of communicating with the benefit it
accrues. We then implement this in terms of the multiagent
Tiger and RoboCupRescue problems. The results show that
our approach can provide a principled, domain-independent
valuation function for communication actions that allows for
agent coordination, without the complexity of considering all

1To illustrate, using our technique a plan in RoboCupRescue
with a horizon of 5 timesteps, and with 6 agents, takes about
one minute to process on a normal desktop machine.

agent beliefs. By doing so, we extend the state of the art in
online communication valuations by providing a technique
that outperforms existing work, whilst employing a more re-
alistic and costly communication medium (specifically that
communication takes time like any other action).

In future work we intend to extend the model and anal-
yse its theoretical properties. In particular, we want to,
using reward shaping, place bounds on the approximation
of a joint belief-based coordination mechanism whilst allow-
ing for complexity reductions. With this established, we
want to improve scalability still further by developing an
online mechanism that can learn the reward shaping func-
tion whilst the agent team is acting on the problem.
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